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Statistical Analysis of Carbon Dating 
 
 The usual measure of the precision of a measurement is the standard deviation, which 
actually is a measure of probability based on what is often called the “bell curve” (Figure 1).  
The meaning of the term, standard deviation, is that the true value of the measurement will be 
within plus or minus one standard deviation of the mean (average) value 68% of the time, or 
within plus or minus two standard deviations 96% of the time, or within 3 standard deviations 
99% of the time.  So, a measurement of 6.1 ± 0.05 g means that the true value of the mass will be 
between 6.05 and 6.15 g 68% of the time.  If you want to be more certain than your range 
brackets the true value, you need to make the interval wider, using a multiple of the standard 
deviation. 
 

Figure 1. The normal curve 
 
 When more than one measurement is made and the measurements are combined 
mathematically to make a new number, the standard deviations must be combined, too.  For 
example, if you measure the distance you traveled and the time it took to get there, and you 
wanted to report miles per hour, you would need to combine the standard deviations of the 
measurement of distance and the measurement of time in order to have a standard deviation for 
the value for speed. 
 The method to use for combining the standard deviations depends on the mathematical 
operation being performed.  These methods of combination are based on probability, too.  For 
example, if two lengths are to be added, the standard deviations are not added in the same way, 
because it is highly improbable that the true value of both measurements will be at the extreme 
edge of the standard deviation range.  So, if two values are added, the standard deviations are 
combined as the square root of the sum of the squares.  For example, 3.8 ± 0.5 ft plus 4.5 ± 0.7 ft 
= 7.7 ± 0.86 ft.  (√(0.52 + 0.72) = 0.86)  Notice that if the two values had been subtracted, the 
answer would be 0.7 ± 0.86 ft, which, in most cases, would be a meaningless value, since the 
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“window” for knowing the true value of the result even 68% of the time would be bigger than the 
value itself. 
 In the case of 14C dating, several measurements are combined to obtain an estimate of the 
age of an article, and several assumptions are made.  The tolerances inherent in the 
measurements must be combined in certain ways to determine the “window” in which the true 
value resides.  Further, if any of these underlying assumptions are found to be unreliable, the 
entire calculation method becomes meaningless. 
 14C is formed in the upper atmosphere by neutron bombardment of 14N.  The neutrons are 
a product of the nuclear reactions in the sun.  The 14C diffuses through the rest of the atmosphere 
and becomes incorporated into living things.  In today’s world, a gram of pure carbon will 
experience approximately 5 disintegrations of 14C per minute.  If an object containing carbon is 
sequestered in some way so as to prevent it from interacting with the environment freely, then 
the atoms of carbon cannot be exchanged with the environment any longer.  14C will continue to 
disintegrate but will not be replenished from the surroundings.  Therefore, the age of an object 
may be estimated from the amount of 14C remaining in a sample as compared to the amount that 
would be there if it were free to equilibrate with the environment. 
 This process depends on several assumptions. 
 

 Assumption 1:  The rate at which 14C is produced in the upper atmosphere is assumed to 
have been constant during the timescale of the experiment.  So, if something is dated at 
10,000 years, the assumption is made that the abundance of 14C was the same then as it is 
now.  This assumes that the solar flux of neutrons was the same then as it is now.  This 
certainly is not true, size the sun has been diminishing in size as it uses up fuel, and the 
reaction rates of the nuclear events in the sun have changed measurably several times in 
the last century. 

 Assumption 2:  The rate decay of 14C has been constant over that time.  In the scientific 
world today, radioactive decay is assumed to occur at a constant rate governed by 
probability.  These probabilities have been developed from measurements, so they are 
called empirical formulas.  No one really knows why a nucleus decides to disintegrate 
when it does, or if that rate can be changed by as-yet-unknown forces.  Many people have 
tried to change the decay rate with an external stimulus.  Nothing has changed it so far.  
However, a reasonable possibility does exist that some stimulus will be found that causes 
a change.  For example, the decay rate could depend on the proximity of other radioactive 
materials or could be stimulated by a “direct hit” by one of the many sub-atomic particles 
that pass through us every second, so their flux would influence the rate of decay.  Our 
current model says that a radioactive nucleus decays at a random moment, the impetus 
for which we do not know.  If we ever find what triggers it, then we will be able to alter 
the rate artificially. 

 Assumption 3:  It is further assumed that these constant decay rates are constant 
according the formulas we have developed.  These rates have been measured only for a 
little more than half a century.  As an example, the decay rate for 14C in published 
literature has changed by 0.3% over the last 40 years (from a half-life of 5730 years to a 
half-life of 5715 years).  Another reputable reference gave the half-life of 14C as 5568 
years.  This could be due to better measurement techniques in some places as compared 
to others.  Or, it could be that the decay rates do not obey the model we have created for 
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them.  A change of 0.3% in 40 years seems insignificant.  But, over a time span of 40,000 
years, that rate could be very much different. 

 Assumption 4:  The method assumes that the various isotopes of carbon (12C, 13C and 
14C) are incorporated into natural materials in proportions that match the atmospheric 
abundance.  However, 14C is 17% heavier than 12C.  So, it moves more slowly.  In some 
natural tissues, the abundance of 14C is significantly lower than in the environment. 

 
 Getting back to standard deviations, if we accept that all the assumptions are valid, 
ordinary statistical analysis sets a limit on the values that 14C dating can produce.  The formula 
for that dating is ln(N/N0) = -λta.  N0 is the predicted original amount of radioactive material, in 
this case, 14C.  N is the amount of C14 that remains.  λ is the decay constant for 14C, which is 
assumed to be constant over all time spans.  And ta is time (or the age of the object, hence the 
variable name ta) in years. 

The predicted original amount of radioactive material, N0, is not a very precise value.  It 
is based on the mass of the carbon sample and the generally accepted natural abundance of 14C.  
The generally accepted value of the abundance is based on the generally accepted measurement 
of 5 disintegrations of 14C per minute per gram of pure carbon.  In the professional literature, I 
have found values for the natural abundance of 14C that differ by more than a factor of 2.  Of 
course, if the relative standard deviation for that natural abundance were 100%, all future 
calculations would be meaningless.  (The relative standard deviation is the standard deviation 
divided by the value with which it is associated, expressed as a percent.  For example, if a value 
of 5 has a standard deviation of 0.5, then the relative standard deviation is 10%.) 

But, since the best values for the abundance of 14C in natural carbon are based on the 
measurement of about 5 disintegrations per minute per gram of carbon, the natural abundance 
can be assumed to be 4.34 x 10-13 ± 10%.  The relative standard deviation of 10% came from the 
fact that the original calculation started with 5, which is an approximation meaning that the true 
value is between 4.5 and 5.5.  For subsequent calculations, the 10% relative standard deviation 
will be used, although this value may be much higher and certainly is not lower. 

The next variable to address is N, the amount of 14C that remains.  The abundance of 14C 
in the sample when it was removed from free exchange with the environment thousands of years 
ago is assumed to have been at the same abundance as it is today, so that value is obtained by 
multiplying the natural abundance times the mass of carbon in the sample.  The amount of 14C 
that is present in the sample today (the value of N) is expected to be much less than the original 
amount (N0).  The value of N cannot be measured directly; rather, it is measured indirectly based 
on the number of 14C that disintengrate during a test period that is relatively short.  For the sake 
of convenience, we will call that value Nd (number of disintegrations).  The value of N can be 
derived from the value of Nd using the same equation as before: ln(Nx/N) = -λtt.  Nx is the 
number of 14C atoms that remain after the laboratory counting period, tt, the testing time.  Since 
N = Nx + Nd (the total number of 14C atoms at the beginning equals the number that remain plus 
the number that decayed), the formula can be rearranged to include the value that can be 
measured (Nd) in order to find the value that is needed (N):  

ln(Nx/N) = -λtt 
becomes 

ln((N – Nd)/N) = -λtt 
becomes 

ln(1 – Nd/N) = -λtt 
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Nd is the number of disintegrations measured by a beta spectrometer.  Only whole 
numbers are possible.  In other words, half of one disintegration cannot happen.  It either 
disintegrates or it doesn’t.  So, Nd is called a counting value.  By definition, its standard 
deviation is Nd.  Its relative standard deviation is 1/Nd, or (Nd)/Nd.  This can be a very 
significant percentage or an inconsequential percentage, depending on the number of counts 
collected.  For example, if only 4 counts are collected, the standard deviation is 2, and the 
relative standard deviation is 50%.  But, if 100 counts are collected, the standard deviation is 10 
and the relative standard deviation is 10%.  If 10,000 counts are collected, the relative standard 
deviation is only 1%. 

The number of collected counts depends on the amount of sample and the length of time 
over which the sample is collected, since disintegrations can be expected at the rate of about 5 
counts per gram of pure carbon if the sample has the normal natural abundance of 14C.  The older 
the sample, the less 14C, and the fewer counts can be expected over a given period of time.  So, 
the oldest samples have the highest relative standard deviation.  At a certain combination of age, 
sample size, and counting time, the relative standard deviation becomes so large that the answer 
is meaningless. 

In addition, many samples are, by nature, very small.  Generally, the sample must be 
digested and chemically treated in order to isolate just the carbon, so the original sample is 
destroyed.  Museums are not pleased to give up substantial portions of important artifacts for 
dating purposes.  So they give as little as they can and still obtain relevant data. 

Most samples do not start out as pure carbon.  Wood, which has a lot of carbon, is still 
only about 46% carbon.  This ratio is close to the carbon fraction of most plants and fibers.  And, 
the chemical technique for isolating the carbon is not perfect, so some is lost.  The quality of the 
laboratory generally determines the loss rate.  The very best will lose less than 5%.  Those in 
universities generally lose over half because the work is done by students.  This loss rate does 
not contribute to the standard deviation, because all that matters is the purity of the final sample.  
But it does impact the required size of the original sample, which may be limited. 

The equipment used to measure the decay of 14C has an upper limit for the sample size, 
too.  The largest sample that can be measured in conventional equipment is about 8 g of pure 
carbon.  Actually, the carbon first is isolated from the sample.  Then, it is hydrogenated to make 
benzene, which is a liquid and easy to handle.  To this is added a combination of chemicals 
called a scintillation cocktail.  When 14C decays, it emits a beta particle (an electron).  This 
electron hits the scintillation cocktail compounds and makes a small flash of light.  The flashes 
of light are counted.  Actually, any nuclear event will be counted.  But, since the only radioactive 
material in the bottle is 14C (everything else having been removed in the purification steps), all 
the flashes of light are attributed to 14C.  Unfortunately, nuclear events are always happening 
around us.  One example is cosmic rays.  These events also cause flashes, so there is a 
background of counts that will happen if any 14C is present or not.  An excellent background is 
0.2 counts per minute (cpm).  The typical background is 0.4 cpm.  Unless disintegrations from 
14C occur significantly more frequently than these background events, the 14C data is lost in the 
noise of the instrument.  Using the typical value used by the EPA for environmental 
measurements, a value must be more than five times the background to be significant.  So, a 
sample must produce at least 0.8 count per minute (a total of 1 count per minute) to be 
“countable.”  Other scientists have used lower values.  Some reputable researchers have used a 
value of three times the noise as the detection limit, or a 14C disintegration rate of 0.4 counts 
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perm inute for a total of 0.6 counts per minute.  This idea will be applied to real values after a 
few more ideas are introduced. 

The duration of counting (tt) is limited by the drift in the electronics of the beta 
spectrometer.  The best instruments can collect counts for 24 hours before drifting significantly.  
The older or less expensive models usually cannot go more than about an hour.  But, assuming 
that the best instrument is used, at 5 disintegrations per minute, 7200 disintegrations per day 
would be collected per gram of pure carbon.  For a 1-gram sample of pure carbon, the relative 
standard deviation of the count rate for fresh (not old) carbon would be 1.18%.  This is a pretty 
good value, especially compared to the 10% relative standard deviation for N0 (the number of 
atoms of 14C when the sample was new, thousands of years ago).  However, new carbon is not 
being counted.  Rather, old samples are counted.  If the sample were, for example, about 5,000 
years old, it would be expected to yield only 2.5 disintegrations per minute, for a total of 3600 
counts, with a relative standard deviation of 1.67%.  This still is pretty good.  But if the article is, 
for example, supposed to be 40,000 years old, the relative standard deviation climbs to 13.2% for 
a 1-gram sample.  But, the relative standard deviation drops back to 4.7% if the sample size is 
increased to the maximum of 8 g.  All of these numbers assume that the best instrument is used, 
and that is was able to count for a whole day without electronic drift.  Further, it assumes that the 
instrument is 100% efficient.  Most are about 80% efficient.  The efficiency affects both the 
standard deviation and the point at which the counts from 14C start to get lost in the noise.  As Nd 
gets smaller, its relative standard deviation (1/√Nd) gets larger. 

Going back to the original formula, ln(N/N0) = -λta, and combining it with the laboratory 
formula, ln(1 – Nd/N) = -λtt, a single formula can be obtained that allows measurable values to 
produce the desired result, the age of the material.  The formulas must be combined to avoid 
including the standard deviation of a value more often than needed, which would produce an 
unwarranted increase in relative standard deviation that depended only on mathematical 
manipulation and not on measurement.  Starting with 

ln(N/N0) = -λta 
rearranging 

ta = - ln(N/N0)/λ 
taking the negative inside the natural log 

ta = ln(N0/N)/λ 
Switching to the other formula 

ln(1 – Nd/N) = -λtt 
rearranging to isolate N in preparation for substitution into the first formula 

1 – Nd/N = exp(-λtt) 
exp() is a convenient was of writing “e to the power of.” 

This prevents having to have subscripts inside of superscripts. 
Rearranging 

Nd/N = 1 – exp(-λtt) 
N = Nd/(1 – exp(-λtt)) 

One last expansion, N0 = mA 
(m = mass of carbon sample; A = abundance of 14C in the carbon sample) 

Substituting them all together: 
ta = ln((1 – exp(-λtt))mA/Nd)/λ 
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Having derived the formula that relates all the measurements, all the standard deviations 
may be compiled to determine the precision of the derived value.  As can be seen in Table 1, 
most of the relative standard deviations are negligible. 

 
Description Variable Value Relative Standard Deviation 
Number of disintegrations Nd 25 to 2500 1/√Nd (20% to 2.5%) 
Decay constant λ 1.21 x 10-4/yr < 0.01% 
Testing time tt 24 hr < 0.01% 
Mass of carbon m < 8 g < 0.01% 
Abundance A 4.32 x 10-13 > 10% 

 
Table 1. Relative standard deviations of measured values 
 
The relative standard deviations of λ, tt, and m are negligible compared to the other 

values.  However, it is important to remember that the relative standard deviation of λ is based 
on the rather large assumption that the decay rate has been constant for tens of thousands of 
years.  These three relative standard deviations will be ignored through the rest of the discussion.  
If they were included, the math would get much messier, but the final value would not be 
noticeably different. 

The relative standard deviation of the value of the abundance of 14C (A) was 10% or 
worse.  The relative standard deviation of Nd depended on the sample size, the counting time, 
and the age of the object.  This may range from 1% to 25%, depending on age and sample size.  
When Nd and A are combined mathematically, the resulting relative standard deviation (the sum 
of the squares of the relative standard deviations, square-rooted) will be between 10% and 27%. 

The last step in calculating the relative standard deviation of the age is to take the 
combined relative standard deviation of Nd and A through the natural logarithm function.  This 
process is entirely different than the methods used for adding, subtracting, multiplying, or 
dividing.  For adding or subtracting, the new standard deviation is the sum of the squares of the 
standard deviations, square-rooted.  For multiplying or dividing, the new relative standard 
deviation is the sum of the squares of the relative standard deviations, square-rooted.  For natural 
logs, it goes like this; the standard deviation of the new value is the relative standard deviation of 
the starting value.  For example, if the combined relative standard deviation of Nd and A is 10%, 
then the standard deviation of the natural logarithm is 0.1. 

The important point of that relationship is that you start with a relative standard deviation 
and end up with a regular standard deviation.  To get it back into a relative standard deviation, 
you must divide by the original value.  This can be very significant or not very significant, 
depending on the values.  For example, consider the arbitrary equation y = ln(x) in which x has a 
relative standard deviation of 10%.  The relative standard deviation of y would be 0.1/y (relative 
standard deviation is the standard deviation divided by the value which it modifies).  If y is 
greater than 1, then the relative standard deviation will be less than 10%, an improvement over 
the relative standard deviation of x.  But if y were less than 1, the resulting relative standard 
deviation would be greater than 10%. 

In this case, the value inside the natural logarithm parentheses was, originally N/N0.  This 
value is always less than 1 since the number of 14C that remain (N) will always be less than the 
number at the beginning (N0).  The older the sample is, the smaller N/N0 become.  The natural 
logarithm of 1 is zero.  So, the standard deviation of the age of a sample in which all the 
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expected 14C was still present would be infinite.  If the sample were fairly young (less than 
10,000 years), the absolute value of ln(N/N0) would be less than 1.  (In standard deviations, 
everything is squared and then square-rooted, so all the negative signs go away.  Plus, as was 
done in the derivation above, the value inside the natural logarithm can be changed to N0/N by 
taking the negative sign inside the natural logarithm.  But, this does not change the absolute 
value of the natural logarithm.)  But when N/N0 passes about 13000 years, the absolute value of 
the natural logarithm becomes greater than 1, so the relative standard deviation of the result gets 
smaller. 

The relative standard deviation of N/N0 gets larger with age, but the value by which it is 
divided gets larger also.  Figure 2 shows the relationship between age and the resulting relative 
standard deviation for a 1-gram and an 8-gram sample of pure carbon.  The mass of the original 
object would be at least twice that mass, since the percentage of carbon is rarely more than 50%.  
The curves turn up sharply at the right end because the 14C becomes so depleted that there are not 
enough disintegrations to count.  The curves turn up on the left because the ratio of N and N0 is 
not different enough from 1 to be statistically significant.  For the curve to reach 10,000 years, 
the carbon sample must be at least 0.27 g.  The sample must weigh at least 0.9 g to reach 20,000 
years, 3 g for 30,000 years, and more than the maximum of 8 grams to reach 38,000 years.  This 
is based on the very best of conditions and equipment: 24-hour counting period, 0.2 cpm 
background, 100% efficiency, and a detection limit that is only three times the noise.  Based on 
this graph, but not on the assumptions that produced it, 14C dating is useful only between 5000 
years and the upper limit imposed by the size of the sample and counting time. 

 
Figure 2. Relative standard deviation of the measurement of the age of 1 gram and 8 gram 

samples of pure carbon. 
 
 Figure 3 shows the same relative standard deviation comparison for potassium/argon 
data.  Potassium is a common mineral in some rocks.  A certain fraction of the potassium on 
earth is in the form of an unstable isotope, 40K that decomposes to argon.  The half-life is 
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1,260,000,000 years.  The natural abundance is 0.117%.  The method is not useful for ages that 
are less than 100 million years because N and N0 are not sufficiently different.  The same types 
of assumptions apply to potassium/argon dating that apply to 14C dating. 
 

 Assumption 1:  The abundance of 40K was the same during the period from 100 million 
to 600 million years ago as it is now. 

 Assumption 2:  The rate decay of 40K has been constant over that time.   
 Assumption 3:  It is further assumed that these constant decay rates are constant 

according the formulas we have developed.  These rates have been measured only for a 
little more than half a century. 

 
Figure 3. Relative standard deviations of the ages assigned by potassium/argon dating. 
 
 In summary, statistical analysis limits the range of ages that can be determined by current 
dating methods using the best equipment and the largest sample sizes for the longest counting 
times: 5000 to 38,000 years, and greater than 100 million years.  Despite the limitations imposed 
by these methods, many ages of objects are published that fall outside those ranges. 
 The 14C method assumes that the rate of neutron bombardment from the sun to the upper 
atmosphere has been the same for 60,000 years.  But the rate of neutron bombardment 
sometimes changes on a scale of decades, so the assumption is not reasonable.  If the quantity of 
neutrons has been increasing over time (as would be expected from a shrinking sun, with more 
neutrons able to escape from the nuclear reactions in the core because the outer layers of the sun 
are getting thinner), all ages determined by 14C dating would yield results that indicated that the 
artifact was older than it really was. 
 The 40K method assumes that the abundance of 40K has been the same for more than 100 
millions years and that the potassium in the rocks has not exchanged with the environment in that 

Relative standard deviation of Age of Sample for 
Potassium/Argon Dating

0%
5%

10%
15%
20%
25%
30%
35%
40%

0 100 200 300 400 500 600
Millions

Years

R
el

at
iv

e 
St

an
da

rd
 D

ev
ia

tio
n



 9

same period of time.  Yet, those who use such dating methods assume that mountain ranges are 
formed in similar time scales, and that continents rise from and sink into the molten interior of 
the earth on similar time scales.  So, rocks cannot be assumed to have been isolated for that long.  
Interestingly, if time scales on earth were measurable across hundreds millions of years, the 
quantity of radioactive material on earth would be huge, based on the quantity that survives to 
this day. 
 Whenever an age based on 14C is published, it should carry with it the size of the sample, 
the backgound rate, the efficiency, and the counting time.  Without these data, the validity of the 
given age cannot be determined.  Many samples are measured using only 0.1 g.  With that size of 
sample and the very best equipment, the 14C counts can never be separated from the background. 
 


